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Force-field for two-points lipid model

* Bonding term

1
Ve == kbond(r - )2
2
In the simulations, k4 of 1000k, T/r,? and r, of

13 A were used.

* Non-bonding term * *

V= 3V DV,

inter-lipidT-T pairs  allinter-lipidpairs

. if r<r ‘ S — ‘
Z(Mj if ro<r<r+w,

—&

V. _=<—¢g COS

atr L

2W,
0 ifr>r +w
vV, = lkrep(r —r) ifr<r Equilibrium distances (A) between
2 inter-monomer particles, r,

In the simulations, &, of 1.9k,T, w_of 19.5 A, k

of 10k, T were used.

H 11.70 12.35
T 12.35 13.00
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e Effects of solvent on solute molecules are implicitly
considered. (Coarse-graining!!)

=>It makes possible to examine long-time dynamics. (In
principle, water molecules should be explicitly present
in MD simulation systems.)

e Stochastic simulation based on the Langevin equation.

* Hydrodynamic interactions (HI) can be taken into account.



BD algorithm

HFROFRGE N FHEEERE

* BD algorithm considering HI ERELGWES
DF
r(t+At)=r(t)+ —At+V2AtBz ————  PREATHIDIE R 1T 5
B
with D = BB” D — kg T
ris a 3N vector representing the spatial coordinates of 672'7761

all the particles in the simulation box. D is the diffusion o s . .
tensor with size of 3N x 3N. F is a 3N vector of force. z is AP=DR-TA222842 D

a 3N vector with zero mean and variance of 1. BDiE Ik A py B
* Rotne-Prager-Yamakawa tensor £ A% B 7EIZON/OFFC&
( F9 !
ke | -
67na ’ t

o kT (| AA) 232 1| o AN  MDTILTZEGLY,
.._<87Z77rij r.I. 2 (g —I‘ijrijj |¢Jan I’ij_ a, o $1$=/\?0)MD€1TO

i

r " TWAHARBDITEALE
KgT Hl_ii}u 35 3 f*} i=jandr, <2a (X, RIANDFEHMEEE
\67ma 32 a 32 a BIZ3EBLTLVELY,




What are hydrodynamic interactions?

Each particle’s force changes the solvent flow, and this in turn
affects forces on other particles through the frictional forces
affecting them.




Systems for membrane assembly

1000 coarse-grained lipid molecules were placed randomly in a 28 X 28
X 28 nm3 periodic box without significant overlaps between particles.

Ten independent initial configurations were generated.
Simulation temperature was set to 298 K.
Stokes radii of particles, a, were set to 6.5 A.

Time step was 2.24 ps, which corresponds to 0.5 X 1073 a?/D, with D, =
kyT/6mna.
Hls were considered by two different ways:

— BD simulation with full His. That is, HIls within each lipid molecule as well as
between lipid molecules (With inter-HIs)

— BD simulation with only intramolecular Hls, where intermolecular Hls are
neglected (Without inter-Hls)

ZDODNEHDEWNT., 2 FREIOFREEEERAHH S (with inter-Hls),

ZL (without inter-HI) D&, > 2DDEEDEI S FRIFEHE
DEELZRDLHLENTED,




Representative simulation results

With inter-Hls Without inter-Hls

3.5 uBD simulations



Hl accelerate membrane self-assembly

Time evolution of nematic order parameter S Overall kinetics of membrane self-assembly

T ] T

With inter-HIs With inter-HIs W

Without inter-HIs Without inter-HIs
f=1-exp(-kt)
0.8 - 0.8 I Seaa
nm
0.6 0.6 | B (=045[s) -
“ 4y
0.4 04 | m -
k=007 [us ]
0.2 02+ 7 P S
0 N 0 ";7-’7/_)75_,:/-' | 1 1 !
0 0.5 1 1.5 2 25 3 35 4
Time (us) Time (pus)
To measure order of lipid membrane, we evaluated the nematic order fis the fraction of systems that reach S > 0.7 within given time periods.
parameter S of the system which is given by the largest eigenvalue of an
order parameter defined by 3 X 3 matrix k(with HI)/k(without HI) = 6.4

Q, = %<3cos€a c0s0, -5, ) with a, 8 = X, Y, 2

Here, 9, is the angle between a lipid molecule axis and a axis, 6,4 is the ﬁ? Fai HI (j: > ﬂﬁﬁgmﬁfgé%’g 6{%’]“
Kronecker delta function, and represents the average over all molecules in Eé'ﬂ"t L \6 o

the system. S equals 1 for perfectly aligned molecules and 0 for a random

configuration.



Nyjpid™

Hl decelerate initial monomer-
monomer association

The ratios of the slopes of the growth curves in

Growth of average lipid-cluster size <N ;> _ _
the presence and absence of inter-HI for various

up to 0.1 ps
<Niipig>
30 l T 4.0
With inter-HI
A Without inter-HI = 35 B
s ol
25: )
Around <Ny ;4> = 10 }E) 30 +
20 L&=4079 [HSj] with inter-HI po o
g =1282.2 [us | without inter-HI 2 2.5 |t ©)
S
15 . % 2.0
'u" | 1.5 [T
10 f 3 O
; 2 10} O
5 Around <N|ipid> =1 k= .
¢ =109.0 [us'] with inter-HI % 05 O
¢ =216.8 [us'] without inter-HI
0 ' ! ! ! 0.0 s L ! .
0 0.02 0.04 0.06 0.08 0.1 0 5 10 15 20 25
Time (Us) <Nlipid>

<N,,i¢> = 1 TIX, g(with inter-Hl)/g(without inter-HI) = 0.50.

=> N FEHIE, B/ X— B/ X—DFEEREZELTNS,

LML, <N,o> DSLLEIZRDE, B FREIHIZEZERLI-AD, BEISRI—DRME
BRE MR,



How can we explain this size
dependent HI effects?

In a diffusion controlled kinetic, the diffusive encounter

rate, kp, can be described by
l Diffusion

, , N ~ 1

© vexp8(r)/ksTH, U

e > dru

e ° D(r)r o)

where W(r) is the potential mean force between the
reactants at center-to-center distance r, o is the encounter

distance, and D(r) is the distance-dependent relative
translational diffusion coefficient. When each reactant is

ko =4p

represented by a sphere, D(r) at diluted condition can be Reaction!
written by

D)=D*D,- 2, D, %; S
Here, D,, is diffusion tensor between particles 1 and 2, T,,

is the unit vector between reactants, and D; is the o

diffusion coefficient of particle i given by
KT
6rna,

D, =



How can we explain this size
dependent HI effects?

Let us assume W(r) = 0, the reactants have a same radius a,, and o is the sum of a,. In the
absence of HI, that is “free-draining (FD) limit”, the relative diffusion coefficient is a constant and
sum of the diffusion coefficients of the reactants, that is D(r) = 2D,. Therefore, the rate constant
in FD limit, k5P, is given by

ki’ =16,0D,a,

0.9
This is the Smoluchowski expression. 0z |
In the presence of HI at Oseen tensor level, D(r) is given by K3 07
k T > 0.6
D(r) =2D,- —= = os)
2,0/77‘ o . HI reduce the relative
Then, the encounter rate , k05", is expressed as 03l diffusion coefficient
Joseen — 12pDya, T
D .
In4 r/a,
When the reactants are represented by single particles having the same radius,
kOseen
D
= » 0.54

D
This means Hl reduce the diffusive encounter rate by 46% (Deutch and Felderhof, 1976).




How can we explain this size
dependent HI effects?

Next, we consider the diffusive encounter rate of objects
consisting of N beads, like polymers. The diffusion

coefficient of a random polymer connecting N identical
beads in the presence of Hl shows the following scaling

property:
D" ~ D,N™ (0<v<1) Diffusion
Here, DOs¢en s the diffusion coefficient of the polymer.
The hydrodynamic radius of the polymer a is related to its Reaction!
DOseen by

KT

a=——2——=a,N"
672_77DOseen 0

Thus, the radius of polymer has NV scaling. Therefore, the
diffusive encounter rate in the presence of Hl is given by

coeen_ 127D 2k, T
° In4 nln4

The rate does not show any N dependence for the
reactant pair consisting of the same number of beads.




How can we explain this size
dependent HI effects?

In the FD limit, the diffusion coefficient DP is given by Rouse theory, which is
DFD — DON—l
Because HI only affects kinetics and not thermodynamics, polymers have the same

radius in the presence and absence of Hl, which scales with N'. Therefore, we obtain
the following scaling properties for the encounter rate in the FD limit:

8k T .\
317

kFD —167ZDFD

which shows N-dependence.

The ratio of the diffusive encounter rate k,°%¢e"/k,fP is given by
kOseen

=0.54N""

D
Zimm theory predicts that v = 1/3 in poor solvent where polymers collapse into

compact conformations. Therefore,

k Oseen

—0.54N??®

D




Comparison between theory and
simulation

4,0 T T T /,’I
~ 35 | Simulation O |
T ' 0.54<N; ;> wweeeeees
L DI NYipid™>
k= 3.0 | -
o A //
=
2 £ 25¢ O O -
- -
3 8
% & 207 T
= 8
n L i
i g A2 , O
a2 =
= /. i
= 1.0 O
c; I ,l, |
w00
OO 1 ] ] I I
0 5 10 L3 20 25

<Nipia™

* Note: the units of g and ky are different. The former has the units of s and the
latter has units of mol-*m3s. Therefore, direct comparison is difficult.

 However, we believe that our theoretical model can capture an essence of Hl
effects on membrane self-assembly.
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Tarmer Schlick Z Molecular Modeling and Simulation: An Interdisciplinary
Guide (Springer) M i> D X E

| often remind my students of Pablo Picasso’s statement on art:
“Art is the lie that helps tell the truth”. This view applies aptly to
biomolecular modeling.

<3k h A ER>

The key in modeling is to develop and apply models that are
appropriate for the questions being examined with them.

Make everything as simple as possible, but not simpler.
Albert Einstein

Lb\l.&s :nb“_ﬁgﬁbb\o oo
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