

粗視化生体分子シミュレータ CafeMol

検崎博生1,

古賀信康¹, 藤原慎司¹, 堀直人¹, 金田亮¹, 李 文飛^{1,2}, 岡崎圭一¹, 姚 新秋¹, 高田彰二^{1,2} ¹京都大学理学研究科生物物理学教室 ² JST-CREST

CafeMol (www.cafemol.org)

- CafeMol 1.0
 source & manual released
- Features are;
 - Various CG protein models multiple basin model accurate CG model
 - Simulating protein-at-work "switching"
- Under development
 DNA/RNA, lipid

Overview of CafeMol

- General-purpose coarse-grained (CG) biomolecular modeling and simulation software
 - Protein: 1 bead / 1 amino acid
 - Nucleic acid: 3 beads (sugar, nucleotide, phosphate) / nucleotide
 - Lipid: ~3 beads / lipid
- Written by FORTRAN90 with MPI and Open MP
- Large-scale simulation
 - $-\sim$ "millisecond" event by K-computer
- Version 1.0 is released (only protein) (2010/12/27)

Menu

Models

Simulation methods

Implementation

Selected applications

In-progress models & methods

Menu

Models

Simulation methods

Implementation

Selected applications

In-progress models & methods

Models and energy functions

1 beads / 1 amino acid

- A. Off-lattice Go model
- B. Atomic interaction based CG model
- C. Multiple basin model
- D. Elastic network model
- E. Electrostatic and hydrophobic interactions
- F. Explicit and implicit ligands

Off-lattice Go model

C. Clementi, H. Nymeyer, and J.N. Onuchic, J. Mol. Biol. (2000)

Based on the energy landscape theory Structure based

$$V_{protein} = V_{local} + V_{go} + V_{ex}$$

$$W_{local} = K_b \sum_{i} \left(r_{i,i+1} - r_{0i,i+1} \right)^2 + K_{\theta} \sum_{i} \left(\theta_i - \theta_{0i} \right)^2$$

$$+ K_{\phi}^1 \sum_{i} \left(1 - \cos(\phi_i - \phi_{0i}) \right) + K_{\phi}^3 \sum_{i} \left(1 - \cos 3(\phi_i - \phi_{0i}) \right)$$

$$K_b = 100\varepsilon$$

$$K_{\theta} = 20\varepsilon$$

$$K_{\theta}^{-1} = \varepsilon$$

$$K_{\theta}^{-1}$$

Atomic interaction based CG (AICG) model

Wenfei Li

1) Contact energy ε_{ij} from pairwise all-atom (AA) energy $E^{IJ}(R_{IJ}) = \sum_{i \in I} \sum_{j \in J} u_{AA}(r_{ij}) \qquad u_{AA}(r) = V(r) + \Delta G^{GB}_{pol}(r) + \Delta G^{SA}(r)$

2) Coefficients fitted by AA-derived fluctuation (23 proteins)

param	K _b	K _a G	k _a ^H	k _a E	k _a ^T	k _a C	ε_{ϕ}^{G}	$\varepsilon_{\phi}^{\ H}$	ε_{ϕ}^{E}	ε_{ϕ}^{T}	$\varepsilon_{\phi}^{\ C}$	\mathcal{E}_{nloc}
Av.	109.94	13.40	40.0 3	17.3 2	19.35	11.7 0	0.29	1.76	1.32	0.82	0.81	0.37

Test for fluctuation, structural change, & folding

Multiple-basin model for proteins

K. Okazaki, N. Koga, S. Takada, J.N. Onuchic, and P.G. Wolynes, PNAS (2006)

Elastic network model

Electrostatic and hydrophobic interactions

Debye-Huckel form for electrostatics

$$V_{\rm ele} = \sum_{i < j}^{N} \frac{q_i q_j}{4\pi\epsilon_0 \epsilon_k r_{ij}} e^{-r_{ij}/\kappa_D}$$

HP interactions analogous to ASA

$$V_{\rm HP} = -c_{\rm HP} \sum_{i \in \rm HP} \epsilon_{\rm HP,A(i)} S_{\rm HP}(\rho_i)$$

Count coordination number for each hydrophobic particle

Explicit and Implicit ligands

Explicit ligand; as a rigid molecule

Implicit ligand; MD-MC scheme with ligand-mediated contact

$$V_{protein} \xleftarrow{k_{on}}_{k_{off}} V_{protein} + V_{imp-lig}$$

$$V_{imp-lig} = \sum_{\substack{ligand-mediated \\ contact-pairs}} - c_{lig}\varepsilon_{go} \exp\left[-\frac{(r_{ij}/r_{0ij}-1)^2}{2(\sigma/r_{0ij})^2}\right]$$

Menu

Models

Simulation methods

Implementation

Selected applications

In-progress models & methods

Simulation method

- Dynamics
 - Newtonian dynamics with Berendsen thermostat
 - Langevin dynamics
- Time integration
 - velocity Verlet algorithm
- Run mode
 - Constant temperature simulation
 - Simulated annealing
 - Auto-search of Tf
 - Replica exchange method
 - Potential "switching"

Menu

Models

Simulation methods

Implementation

Selected applications

In-progress models & methods

CafeMol code

• Parallelization

- neighboring list, force, energy
 - →hybrid(MPI+Open MP)
- replica exchange
 - →MPI(temperature/Hamiltonian REMD)

Performance of MPI parallelization

1300 base pairs DNA (7798 particles) BG/L at Riken

High parallelization efficiency

Performance of hybrid parallelization (MPI and Open MP)

20 nucleosomes (35918 particles) RICC at Riken

Menu

Models

Simulation methods

Implementation

Selected applications

In-progress models & methods

Native fluctuation by off-lattice Go model

Folding simulation of src SH3 domain

N. Koga, and S. Takada, J. Mol. Biol. (2001)

Example of input file (folding simulation of src SH3)

Sequence/structure

Folding temperature of src SH3 (Auto-search of Tf)

Bi-section method

<<<< job_cntl i_run_mode = 4 i_simulate_type = 1 i_initial_state = 1 >>>> <<<< searching_tf tempk_upper = 500.0 tempk_lower = 100.0 >>>>

****** tf out tempk n state d state p trans tf out 300.000 995 5 ***** tf_out tempk n_state d_state p_trans tf out 400.000 1000 0 ****** tf_out tempk n_state d_state p_trans tf out 350.000 166 835 78 ****** tf_out tempk n_state d_state p_trans tf out 325.000 953 48 19 ****** . . . ***** tf out tempk n state d state p trans tf out 341.406 638 363 98

Folding temperature of some proteins

Protein	Number of amino acid	Folding temperature(K)
albumin binding domain	53	380.4
src SH3 domain	56	342.9
protein G	56	338.2
α -spectrin SH3 domain	57	360.1
Sso7d	64	332.0
protein L	78	374.2
Im9	86	382.0
cytochrom B562	106	352.2

"Switching" simulation

Rotation mechanism of F₁-ATPase by switching Go model

Conformational change by MBP

K. Okazaki, N. Koga, S. Takada, J.N. Onuchic, and P.G. Wolynes, PNAS (2006)

Sliding movement of KIF1A

R. Kanada, et al unpublished data

phase: multiple-basin (T, D)
 phase: go(D)
 phase: multiple-basin(D, phi)
 phase: go(phi)
 phase: go(T)

KIF1A:blue tubulin:green carge:yellow

Wenfei Li

Frustration, specificity & nonlinearity in large-amplitude motion of allosteric proteins

Li, Wolynes, & Takada, PNAS 2011

Off-lattice Go model (merge of Go model & ENM) Clementi, Nymeyer, & Onuchic 2000

$$(\mathbf{R} | \mathbf{R}_{0}) = \sum_{\text{bonds}} K_{r} (b_{i} - b_{i0})^{2} + \sum_{\text{angles}} K_{\theta} (\theta_{i} - \theta_{i0})^{2} + \sum_{\text{dihedral}} \{K_{\phi}^{1} [1 - \cos(\phi_{i} - \phi_{i0})] + K_{\phi}^{3} [1 - \cos(3(\phi_{i} - \phi_{i0}))] \} + \sum_{\text{dihedral}} \sum_{i < j - 3} \kappa_{1} \left[5 \left(\frac{r_{0ij}}{r_{ij}} \right)^{12} - 6 \left(\frac{r_{0ij}}{r_{ij}} \right)^{10} \right] + \sum_{i < j - 3} \sum_{i < j - 3} \kappa_{2} \left(\frac{D}{r_{ij}} \right)^{12}$$

Subscript 0 means the value at native

$$K_r = 100e \ K_{\theta}^{-1} = 20e \ K_{\phi}^{-3} = 1.0e \ K_{\phi} = 0.5e$$

 $\varepsilon_{1} = \varepsilon_{2} = 0.17e \ D = 0.45(\ \text{\AA})$

Atomic interactions in allosteric proteins: Energy decomposition

Analysis of residue-pairwise energy from atomic force field

$$E^{IJ}(R_{IJ}) = \sum_{i \in I} \sum_{j \in J} u_{AA,ij}(r)$$

Gohlke et al., JMB, 2003, 330, 891

E^{IJ}: coarse grained contact energy $u_{AA,ij}$. All atom energy between atom pair (i, j) $U_{AA}(r) = V(r) + \Delta G_{pol}^{GB}(r) + \Delta G^{SA}(r)$ Using LCPO (pair wise)

AA energy include vacuum part and solvation part, by AMBER99SB force field.

<u>Case et al. AMBER10, 2008</u> <u>Weiser et al, JCC, 1999, 20,217</u>

Contact energies in single-domain proteins Energy decomposition

Exponential law!!

Contact energies in allosteric proteins: Energy decomposition Adenylate kinase

0.6 1ake shared state-specific close - close open 0.4 ۵_ 0.2 4ake 0.0 0 -1 -3 -2 open Econ(kcal/mol) •Diverse •Diff bet. classes

Atomic interactions in allosteric proteins: Energy decomposition Adenylate kinase

Atomic interactions in allosteric proteins: Energy decomposition

41 allosteric proteins in pdb Comp of class-average for each protein

Atomic interaction based CG (AICG) model

Deriving parameters

$$V(R | R^{0}) = \sum_{i} k_{b}^{i} (r^{i} - r_{0}^{i})^{2}$$

+ $\sum_{i} k_{a}^{i} (\theta^{i} - \theta_{0}^{i})^{2}$
+ $\sum_{i} \{ \varepsilon_{\phi}^{i} [1 - \cos(\phi^{i} - \phi_{0}^{i})] \}$
+ $\varepsilon_{\phi}^{i} [1 - \cos(\phi^{i} - \phi_{0}^{i})] / 2 \}$
+ $\sum_{i>j-3}^{native} \varepsilon^{ij} [5(r_{0}^{ij} / r^{ij})^{12} - 6(r_{0}^{ij} / r^{ij})^{10}]$
+ $\sum_{i>j-3}^{non-native} \varepsilon (C / r^{ij})^{12}$

i > i - 3

Multiscale strategies:

<u>Chu and Voth, 2006</u> <u>Li et al., 2010,</u> <u>See also</u> <u>Trylska et al</u> <u>Gohlke et al., 2003,</u>

relative weight of contact energies

 \clubsuit Match rmsf bet. AA and CG \rightarrow

scale local & tertiary interactions

For 23 training proteins

--- Flow chart

F: mean square fluctuations

AICG model for mean fluctuations

Near native fluctuation (RMSFs)

AICG model for mean fluctuations

30 proteins

Fujitsuka et al, 2006, *Proteins* Yang et al, 2007, *Structure*

Table 3. Average correlation coefficients (C.C.) and standard errors (S.E.) between the rmsfs derived by AA model and by different CG models based on the proteins of testing set.

	El	MM	AICG model				
Models	GNM	ANM	hete	homo	hete-nloc		
C.C.	0.694	0.648	0.758	0.722	0.738		
S.E.	0.018	0.031	0.021	0.027	0.031		
hete: heterogeneous model. homo: homogeneous model. hete-nloc: only the nonlocal interactions are heterogeneous.							

AICG model for predicting structural change adenylate kinase

$$d = (R^{o} - R^{c}) / |R^{o} - R^{c}|$$

overlap(i) = $\vec{v}^{i} \cdot \vec{d}$

PCA for Go model, NM for ANM

AICG model for predicting structural change Correlation w. structure change

41 struct pairs of allosteric proteins

Gerstein, NAR1998

		ENM	New model				
Models		ANM	hete	homo	hete-nloc		
open→close	М.О.	0.480 (0.037)	0.540 (0.037)	0.511 (0.038)	0.518 (0.040)		
$V(R R^{open})$	C.O.	0.600 (0.040)	0.657 (0.039)	0.628 (0.040)	0.626 (0.042)		
$close \rightarrow open$	М.О.	0.421 (0.032)	0.517 (0.036)	0.475 (0.036)	0.512 (0.038)		
$V(R R^{close})$	C.O.	0.556 (0.037)	0.638 (0.038)	0.608 (0.038)	0.631 (0.039)		

Both the interaction heterogeneity and anharmonicity are important for predicting the conformational change.

Large-amplitude fluctuation adenylate kinase

Large-amplitude fluctuation in AKE

LID domain has higher mobility than the NMP domain. Interaction heterogeneity enhances the collective motions.

Large-amplitude fluctuation in AKE

Very rare event in a long trajectory

Menu

Models

Simulation methods

Implementation

Selected applications

In-progress models & methods

CG DNA model

Three interactions sites
Phosphate
Sugar
Base
Reproduce various DNA
behavior
Salt-dependent melting
Bubble formation

 Mechanical properties

T.A. Knotts IV, N.Rathore, D.C. Shwartz, and J.J. Pablo, J. Chem. Phys. (2007)

3SPN.1 force field

E.J. Sambrisiki, D.C. Schwartz, and J.J. de Pablo, Knotts, Biophys J. (2009)

$$V_{local} = V_{local} + V_{stack} + V_{bp} + V_{ex} + V_{qq} + V_{solv}$$

$$V_{local} = K_{b1} \sum_{i} \left(r_{i,i+1} - r_{0i,i+1} \right)^{2} + K_{b2} \sum_{i} \left(r_{i,i+1} - r_{0i,i+1} \right)^{4}$$

$$+ K_{\theta} \sum_{i} \left(\theta_{i} - \theta_{0i} \right)^{2} + K_{\phi} \sum_{i} \left(1 - \cos(\phi_{i} - \phi_{0i}) \right)$$

$$\theta: \text{ bond angle} \\ \phi: \text{ dihedral angle} \\ (0 \text{ means B-type DNA})$$

$$V_{stack} = 4\varepsilon_{1} \sum_{i,j}^{N_{ex}} \left[\left(\frac{\sigma_{0ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{0ij}}{r_{ij}} \right)^{6} \right]$$

$$W_{bp} = \sum_{i,j}^{N_{bp}} 4\varepsilon_{bpi} \left[5 \left(\frac{r_{0ij}}{r_{ij}} \right)^{12} - 6 \left(\frac{r_{0ij}}{r_{ij}} \right)^{10} \right]$$

$$V_{ex} = 4\varepsilon_{1} \sum_{i,j}^{N_{ex}} \left[\left(\frac{\sigma_{0}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{0}}{r_{ij}} \right)^{6} \right] + \varepsilon_{1} (if r_{ij} < d_{cul}),$$

$$= 0 (if r_{ij} > d_{cul})$$

3SPN.1 force field (electrostatic and solvation interaction)

$$V_{qq} = \sum_{i,j}^{N} \left(\frac{q_{i}q_{i}}{4\pi\varepsilon_{0}\varepsilon(T,C)r_{ij}} \right) e^{-r_{ij}/\kappa_{D}} \qquad \text{Debye-Huckel theory}$$

$$\varepsilon(T,C) = \varepsilon(T)a(C)$$

$$\varepsilon(T) = 249.4 - 0.788T/K + 7.20 \times 10^{-4}(T/k)^{2}$$

$$a(C) = 1.000 - 0.2551C/M$$

$$+ 5.151 \times 10^{-2}(C/M)^{2} - 6.889 \times 10^{-3}(C/M)^{3}$$

$$V_{solv} = \sum_{i

$$\varepsilon_{s} = \varepsilon_{N}A_{I}$$

$$e_{N} = e_{0} \left(1 - \left[1.40418 - 0.268231N_{nt} \right]^{-1} \right)$$

$$A_{I} = 0.474876 \left(1 + \left\{ 0.148378 + 10.9553[Na^{+}] \right\}^{-1} \right)$$$$

DNA duplex

- 30 bp oligomer of DNA
- Langevin dynamics (300K)
- [Na⁺] = 69mM

<<<< unit_and_state i_seq_read_style = 2 i_go_native_read_style = 3 sequence 1-2 dna >>>> DH <<<< energy_function NLOCAL(1-2/1-2) 7 11 i_use_atom_protein ₩ ₩ 3SPN.1 $i_use_atom_dna = 0$ >>>> <<<< electrostatic \ Intra mol 1,2 Inter mal 1-2 cutoff ele = 20.0ionic_strength = 0.069 diele_water = 78.0>>>> <<<< in box xbox = 120.0ybox = 120.0zbox = 120.0boxsigma = 4.0>>>>

Simulation of nucleosome

Electrostatic interaction +
 Go potential

 $\epsilon_{go} {}^{pro-dna} = 0.5 \epsilon_{go} {}^{pro}$ [Na⁺] = 50mM

```
<<<< energy_function
NLOCAL(1-2/1-2) 7 11
NLOCAL(1-2/3-10) 2 3 7
NLOCAL(3-10/3-10) 2 3
i_use_atom_protein = 0
i_use_atom_dna = 0
>>>>
<<<< electrostatic
cutoff_ele = 20.0
ionic_strength = 0.05
diele_water = 78.0
>>>>
```

ε_{go} ^{pro-dna}:coefficient of protein-DNA Go potential

CG lipid model

CafeMol

H. Noguchi, and M. Takasu, Phys. Rev. E (2001)

- i th lipid molecule:
 - 1 hydrophilic particle (j=1, blue)
 - 2 hydrophobic particles (j=2,3, gray)
- Self-assemble bilayer structure

CG lipid model

$$\begin{split} \hline V_{lip} &= V_{local} + V_{rep} + V_{hydro} \\ \hline \theta: \text{ bond angle} \\ V_{local} &= K_b \sum_{i,j=1,2} (r_{(i,j),(i,j+1)} - r_{0(i,j),(i,j+1)})^2 + K_\theta \sum_i \cos \theta_i \\ V_{rep} &= \varepsilon \sum_{i,j=1,2}^{N_{sl}} \exp \left[-20 \left\{ \frac{r(i,j),(i',j')}{\sigma} - 1 \right\} \right] \\ V_{hydro} &= \varepsilon \sum_{i,j=2,3} \left\{ \begin{array}{c} -0.5\rho & (\rho_{i,j} < \rho_j * -1) \\ 0.25(\rho_{i,j} - \rho_j *)^2 - c_j & (\rho_j * -1 \le \rho_{i,j} < \rho_j *) \\ -c_j & (\rho_j * \le \rho_{i,j}) \end{array} \right\} \\ \rho_{i,j} &= \sum_{i \neq i', j'=2,3} \frac{1}{\exp \left[20 \left(\frac{r_{(i,j),(i',j')}}{s} - 1.9 \right) \right] + 1} \\ \end{split}$$

Formation of vesicle

S. Fujiwara, et al unpublished data

<<< job_cntl $i_run_mode = 2$ i_simulate_type = 1 i_initial_state = 5 >>>> <<<< unit_and_state i_seq_read_style = 3 i_go_native_read_style = 3 1 lipid sequence >>>> <<<< initial_lipid nmp_transverse_lipid = 20 nmp_longitudinal_lipid = 20 $nlayer_lipid = 1$ grid_size_lipid = 1.075 $z_{coord_lipid(1)} = 1.0$ >>>> <<<< energy_function NLOCAL(1/1) 17 19 i_use_atom_protein = 0 i_use_atom_dna = 0 >>>>

Acknowledgement

CafeMol development has been supported by Research and Development of the Next-Generation Integrated Simulation of Living Matter, a part of the Development and Use of the Next-Generation Supercomputer Project of the Ministry of Education, Culture, Sports, Science and Technology.