バイオスーパーコンピューティング研究会 (BSCRC) 第二回総会・講演会 2010.10.15 14:35 - 15:25

リート いった。テーラーメード医療への応用を目指したマルチスケール、マル チフィジックス心臓シミュレータ

杉浦 清了, 岡田 純一, 鷲尾巧, 渡邊浩志, 久田俊明

東京大学大学院新領域創成科学研究科

マクロの指標に基づくシミュレーションは病態を明解に説明できる。

しかし一方で.....

- ・薬のターゲットは分子
- ・疾患と遺伝子異常の<u>関係</u> 病因?

Ex.

家族性肥大型心筋症

これらの変異はタンパクの機能低下を来たす!

force

Fujita et al. 1996

Electrophysiology model for excitation

TenTusscher K.H.W.J. et al Am J Physiol 2003 Courtemanche M. et al Am J Physiol 1998

 $I_{ion} = I_{Na} + I_{K1} + I_{to} + I_{Kr} + I_{Ks} + I_{CaL} + I_{NaCa} + I_{NaK} + I_{pCa} + I_{pK} + I_{bCa} + I_{bNa}$

Sarcomere dynamics model for contraction

A - Four state model

Virtual myocytes are coupled to build the tissue structure

9

CT画像に基づいた心臓有限要素法モデル

心筋の線維方向とシート構造のモデル化

LeGrice, Hunter, P. J. et al. AJP .1995.

Costa K D, et al, AJP 1999

One-dimensional Finite Element Network was constructed based on anatomical data. Cell model: DeFrancesco and Noble, 1985

slow motion 15

冠循環のモデル化

1. 心表面の血管 (artery and vein)

2. 小血管 & 微小循環

In silico 診断&治療

-- Clinical application and verification --

Kern MJ Hemodynamic Rounds Wiley-Liss 1994 pp10, 心臓の適応と制御 菅、堀編 3.7 心房機能 荒川ら

心室細動 Ventricular fibrillation (VF)

バーチャル心臓手術

Case#: **梗塞後の心室瘤**

Optimal design of the graft

Normal conractility X (relative flow) 0 0.15 0.6 -2,000e-002 -6.000e-003 8.000e-003 2.200e-002 3.600e-002 5.000e-002 LAD stenosis LCX stenosis

-2.000e-003 4.000e-004 2.800e-003 5.200e-003 7.600e-003 1.000e-002

31

-2.000e-003 4.000e-004 2.800e-003 5.200e-003 7.600e-003 1.000e-002

局所仕事2

-2.000e-003 4.000e-004 2.800e-003 5.200e-003 7.600e-003 1.000e-002

-2.000e-003 4.000e-004 2.800e-003 5.200e-003 7.600e-003 1.000e-002

32

