

バイオスーパーコンピューティング東北2014 2014年6月2日

予測医療を目指して ーマルチモダリティと血流シミュレーションの融合-

Marie Oshima The University of Tokyo, Japan

Outline

- Introduction
- Patient-specific modeling of vascular geometry
- Numerical method
 - 1D-0D Simulation of the entire circulation including the cerebrovascular system
- Patient-Specific simulation for Cerebrovascular circulation after carotid stenting
 - Measurement data & 3D-1D-0D simulation
 - Measurement data & 1D-0D simulation
- Summary and Future Work

Background : the situation of cardiovascular diseases in Japan

Since Japan is becoming an aging society, the number of patients with cardiovascular diseases would increase.

There is high possibility for a patient to become paralysis or bedridden.

Quality of life of the patient becomes low. The family experience the burden of long-term care.

Background & Motivation - Atherosclerosis-

It is a main cause of stroke and heart attack
Characteristics of atherosclerosis formed at preferential locations such as bifurcation areas with low WSS(wall shear stress)
Treatment :
Carotid artery stenting is becoming widely used

restenosis
intracranial hemorrhage (ICH)

How can we predict the influences of the surgery on individuals in the preoperative stage ?
Patient-specific computer simulation

Objectives

Geometrical multi-scale modeling & simulation of the cardiovascular system

Patient-Specific Modeling of Vascular Modeling

V-Modeler – Interactive operation based on GUI

•78 years old, male: The arterial circular of Willis

Multi-Scale Simulation 1D-0D simulation 3D-1D-0D simulation

Cerebrovascular circulation

1D-0D modeling of the entire cardiovascular system

Coupling of a 1-D compliant model and a 3-D rigid model

Patient-Specific Modeling & Simulation

 Measurement data & 3D-1D-0D (MRI & PC-MRI)
 * Measurement data&1D-0D (MRI, PC-MRI,SPECT)

Clinical record of a patient undergoing carotid surgery

Patient: 78 years old male Preoperative symptoms: Stroke induced by a severe stenosis present in the left internal carotid artery (ICA). Surgery: Carotid artery stenting (CAS) Postoperative syndrome: Intracranial hemorrhage due to hyperperfusion Pre-operative MRA Post-operative CT

Carotid bifurcation

Brain scanning

schemic regior

100 C 100 C

Cerebral arteries

Circle of Wills Patient clinical data 1. Flow rate by PC-MRI & Blood Pressure Averaged FR(ml/min) Pre Post Rt. ICA 251.1 231.8 (47) 61 67 Lt. ICA 76.4 186.9 (40) ΒA 154.9 142.0 56 Rt. MCA 71.2 50.3 (61) Lt. MCA 23.1 59.3 (67) O Inlet Max. Min Averaged BL (mmHg) 100.0 95.0 O Outlet 2. Medical Images MRA CTA

Optimization of parameters

Application of measurement data and optimization of Parameters

> Step 1: Measurement of diameter & length of artery

Step 2 : Application of measurement data to simulation
Step 3 : Optimization of peripheral resistance

Estimation of parameters for stenosis

- Step 1: Measurement of diameter & length of artery
- Step 2 : Application of measurement data to simulation
- > Step 3: Optimization of peripheral resistance
- > Step 4: Estimation of occlusion (in case of pre-operation)

Due to sever stenosis, L. ICA is not shown

Less than 1 pixel da: 0.297mm < 1 pixel of CT image Dc: 1.56mm _**Stenosis : 0.81~1.00**

77

1 6

A ROSEN HICK

Results

A BAT L

Estimation of flow distribution from pre-operative data

Cerebral artery model 3D modelii Right Left 3D grid model (829,084 cells) í ACA MCA Parameters of stenosis Geometric model of the 1D model parameters MCA bifurcation after region ICA subtraction and smoothing Geometric parameters of each cerebral artery

(1) Incorporation of medical image data

Flow waveforms and streamlines

Mean wall shear stress (MWSS) and Oscillatory shear index (OSI)

Challenges of 3D-1D-0D multi-scale simulation

- What can we do for medical doctors to use simulations in the clinical study ?
 - Requirement for applying simulation to an individual patient
 - Combination of medical image data
 - Requirement for allotted time
 - How long can they wait to get results ?
 - Requirement for usability
 - Can they handle different types of software for modeling, simulation, and visualization?
 - PC?

How can we combine patient-specific data & simulation in a practical manner ?

Summary

- A general cardiovascular model can be personalized to simulate the hemodynamic conditions for a patient.
 - The cerebrovascular circulation including distal brunches of ECAs is added on 1D-0D simulation
 - Estimation of both pressure & velocity is improved by optimizing the peripheral resistance of the cerebrovascular circulation with the ultrasound data
- Patient-Specific 3D simulation is conducted under the boundary conditions given by 1D-0D simulation of the entire circulatory system
- Patient-specific 1D simulation is incorporated with the entire circulatory system using patient-specific image data such MRI, CT, and SPECT
- A personalized cardiovascular model has the potential to predict the risk of a surgery based on clinical data acquired during preoperative diagnosis.

Application of simulation to Clinical Study

Acknowledgement

THE SURAN A

This research is supported by the 'Research and Development of the Next-Generation Integrated Simulation of Living Matter', as a part of the 'Development and Use of the Next-Generation Supercomputer Project' of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Professor Fuyou Liang: Shanghai Jiao Tong University, Shanghai, China Professor Shu Takagi: The University of Tokyo, Japan Dr. Ryutaro Himeno: Riken

Professor Kiyomi Niki: Tokyo City University Mr. Ryota Abe Ms. Shiori Yauchi

Professor Motoaki Sugawara: Hemeji Dokyo University Dr. Shigeki Yamada: Hamamatsu Rosai Hospital

ADD - ADD - ADD - ADD

Mr. Masaharu Kobayashi The University of Tokyo

AND AND ADDRESS OF ADDR

Thank you for your attention

