バイオスーパーコンピューティング研究会2014年講演会 平成26年10月15日 理化学研究所 鈴木梅太郎ホール, 和光市

流体・構造連成手法の開発と 「京」による血栓シミュレーション 杉山和靖 (大阪大学大学院基礎工学研究科)

- ・文部科学省「次世代計算科学研究開発プログラム」
- ·科研費 若手B No. 21760120
- ・理化学研究所 情報基盤センター RICC 簡易利用
- •「京」戦略分野1 課題番号 hp120306
- •「京」一般利用 課題番号 hp120238

## 共同研究者

伊井仁志,竹内伸太郎(阪大) 島本憲夫,高木周,松本洋一郎(東大) 塩崎聖治,後藤信哉(東海大・医) Xiaobo Gong (上海交通大) Huaxiong Huang (York University) Jinbiao Wu (北京大) 川島康弘 (富士通システムズ・イースト) 野田茂穂,姫野龍太郎(理研)

## 謝辞

田村 典子,七澤 洋平 (東海大·医) 沖田 浩平 (日本大) 山村 直人,石川 顕一(東大) 小山田耕二,坂本尚久,大和田 拓 (京大) 小野 謙二,大野洋介,舛本 現,小山 洋 (理研)

#### 医療画像と相性の良い流体構造連成解析を実現したい

生体:機械部品とは異なり,元々,設計図が存在せず

医療画像 (CT/MRI)



Voxel data (VOF; Volume Of Fluid)

→ 多媒質幾何・材質

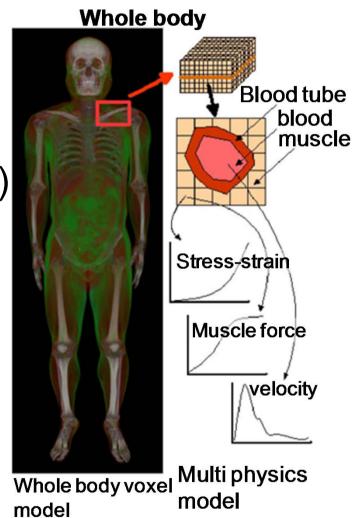


方法論を確立したい

(有限差分•固定格子)

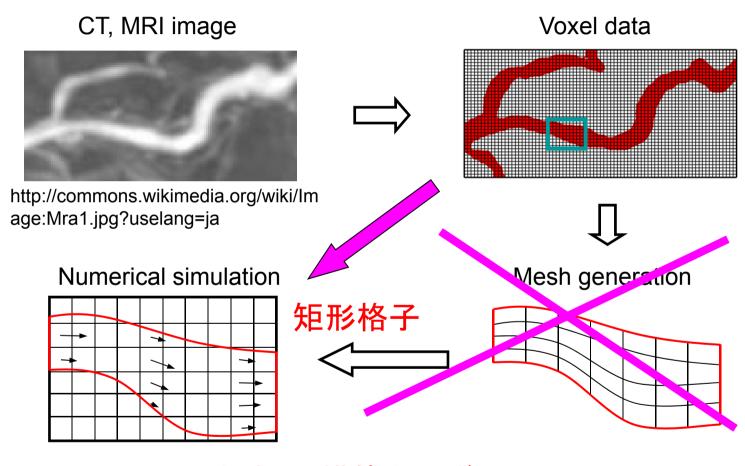
Euler法に基づくシミュレーション

- •voxelデータとの高い親和性
- ・既存の流体解析法にならう



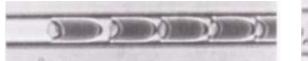
## 具体的にどういうことか?シミュレーションまでの手順

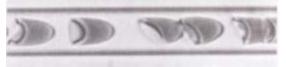
### 本Euler法



メッシュの生成・再構築をせずに、 voxel dataを直接利用

## 血流解析の実現性(寸法と自由度)







\*Gaehtgens et al. (1980) Blood Cells, 6, 799.

- 多粒子系流れ
- •幾何学的非線形

#### 予測したい現象

血球の動態、血液のレオロジー

#### 寸法

•細動脈: 径 ~100μm

•赤血球: 径8µm, 厚さ2µm

•血小板: 径2µm

·空間解像度: O(0.1µm)

 $\times O(10^3)$ 

→ 3DでO(10<sup>9</sup>)-O(10<sup>10</sup>) 自由度

## 課題

流体・構造/膜連成法の設計(高自由度&柔軟な分散体)

## アプローチ (Lagrange法 vs. Euler法)

#### Lagrange法

(物質点にのって方程式を記述)

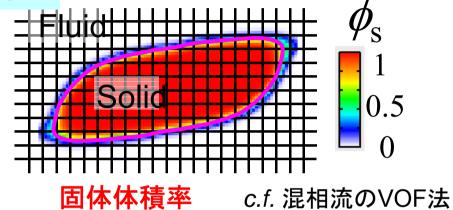
#### Euler法

(空間的に固定した点で方程式を記述)

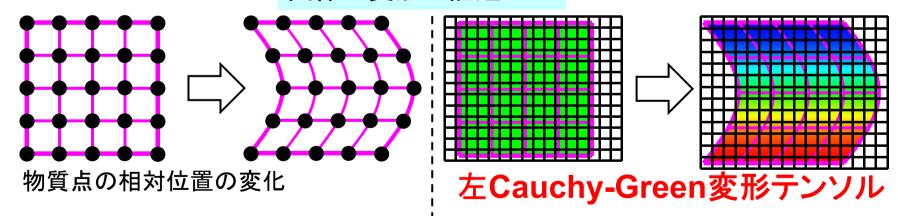
#### 二相の区別は?

Fluid

境界適合メッシュ



#### 固体の変形の記述は?



- Sugiyama, Ii et al. (2011) J. Comput . Phys., 230, 596.
- Ii, Sugiyama et al. (2011) Int. J. Numer. Meth. Fluids, 65, 150.

## 新たな計算方法

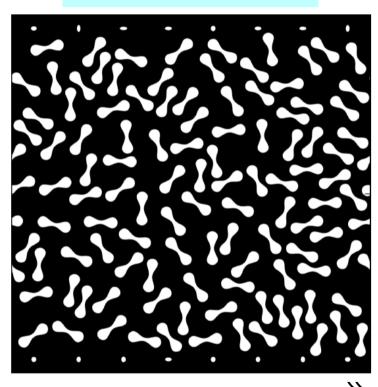
(生体の問題に限らず)

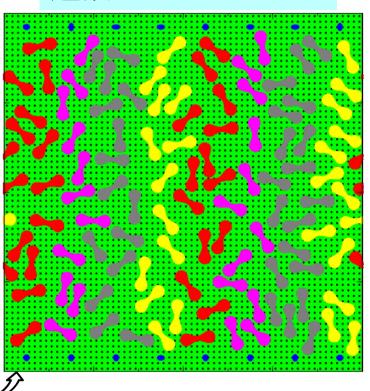
複雑な境界形状を持つ/多数の分散体を含む

流体・構造連成問題の数値シミュレーションを容易に

初期voxelデータ

連成シミュレーション

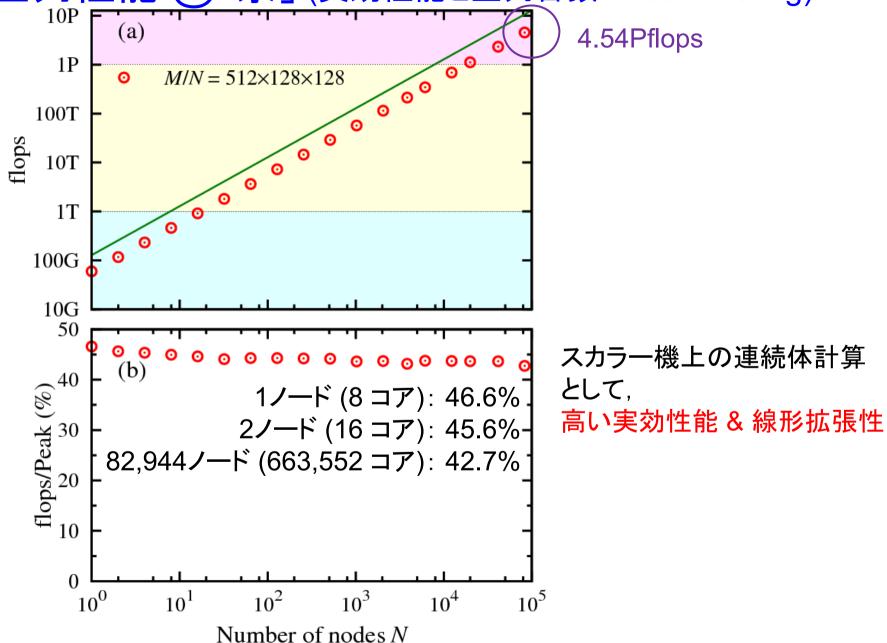




固定メッシュ上で、全ての物理量を更新境界適合メッシュの生成・再構成が不要

- Sugiyama, Ii et al. (2010) Comput . Mech., 46, 147.
- Nagano, Sugiyama et al. (2010) J. Fluid Sci. Tech., 5, 475.
- Takagi, Sugiyama et al. (2012) J. Appl. Mech., 79, 010911.

## 並列性能 @「京」(実効性能と並列台数. weak scaling)



• Sugiyama, Kawashima et al. (2013) Symp. High Performance Comput. Comput. Sci, IPSJ-HPCS2013005.

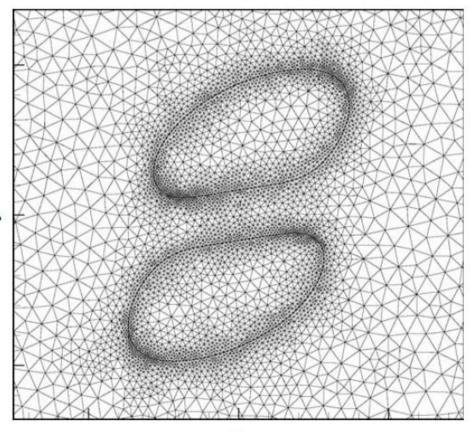
# 検証

# Comparison with available numerical data

Gao & Hu (2009) *J. Comput. Phys.* **228,** 2132.

particle-particle interactions in a shear flow

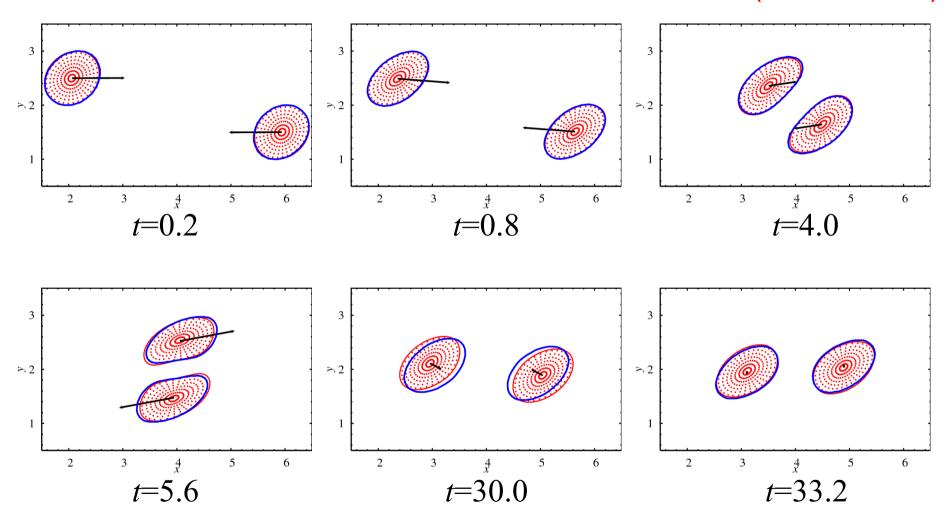
Arbitrary Lagrangian
-Eulerian (ALE) method



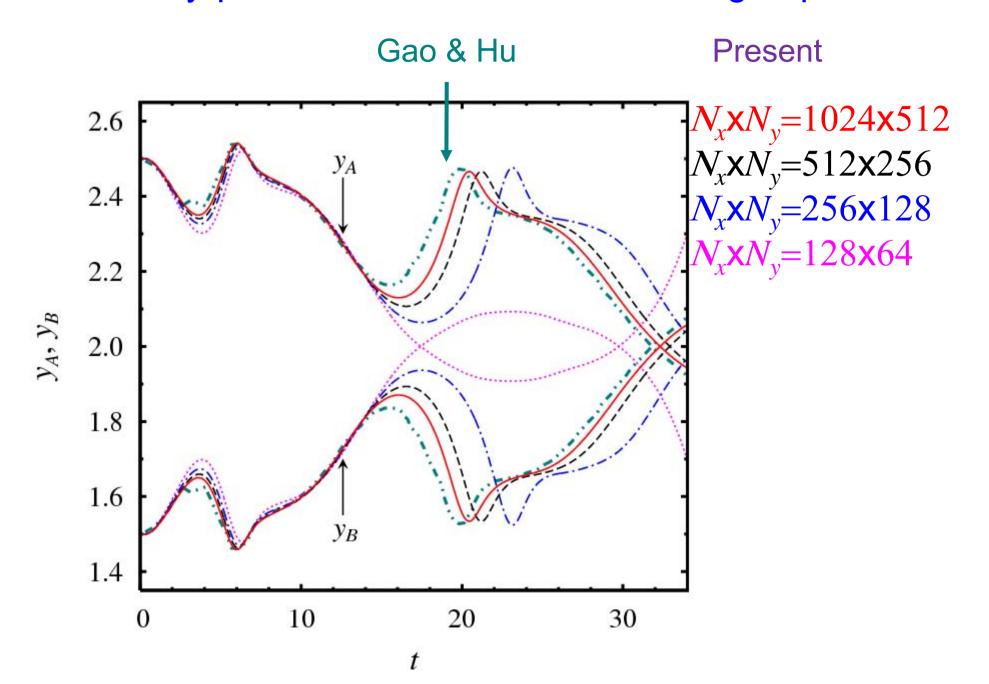
 $N_x x N_y = 1024 x 512$ 

Gao & Hu (ALE)

- Present (full Eulerian)



#### Particle's y-position in time v.s. Number of grid point

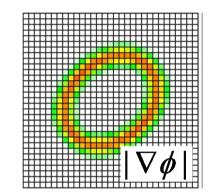


## 流体•膜連成

$$\nabla \cdot \mathbf{v} = 0, \quad \rho_m \left( \partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} \right) = -\nabla p + \nabla \cdot (2\mu \mathbf{D}) + |\nabla \phi| (\mathbf{P} \cdot \nabla) \cdot (\mathbf{\tau}_s + \mathbf{q}_s \mathbf{n}),$$

#### 面応力

$$\boldsymbol{\tau}_{s} = \frac{2}{\sqrt{\Pi_{s} + 1}} \left( \frac{\partial W_{s}}{\partial I_{s}} \mathbf{B}_{s} + (\Pi_{s} + 1) \frac{\partial W_{s}}{\partial \Pi_{s}} \mathbf{P} \right),$$



$$I_s = tr(\mathbf{B}_s) - 2$$
,  $II_s = \frac{1}{2} \{ (tr(\mathbf{B}_s)^2 - tr(\mathbf{B}_s \cdot \mathbf{B}_s)) \} - 1$ .

#### 左Cauchy-Green表面変形テンソル

$$\mathbf{B}_{s} = \mathbf{P} \cdot \mathbf{G}_{s} \cdot \mathbf{P}, \, \mathbf{G}_{s} = \mathbf{F} \cdot \mathbf{P}_{R} \cdot \mathbf{F}^{T},$$

## surface projection P = I - nn,

$$P = I - nn$$

$$\mathbf{q}_{s} = E_{b} \{ (\mathbf{P} \cdot \nabla) \cdot (\mathbf{\kappa} - \kappa_{R} \mathbf{P}) \} \cdot \mathbf{P},$$
  
$$\mathbf{\kappa} = -\nabla \mathbf{n}, \ \kappa_{R} = -\frac{1}{2} \nabla \cdot \mathbf{n}_{R}.$$

- •Gong, Sugiyama et al. (2009) J. Biomech. Eng., 131, 074504.
- Ii, Gong et al. (2012) Comm. Comput. Phys., 12, 544.

## 膜の運動学に対する構成式

**VOF** 

$$\partial_t \phi + (\mathbf{v} \cdot \nabla) \phi = 0,$$

面ひずみ

$$\partial_t \mathbf{G}_s + (\mathbf{v} \cdot \nabla) \mathbf{G}_s = \mathbf{L} \cdot \mathbf{G}_s + \mathbf{G}_s \cdot \mathbf{L}^T, \quad \mathbf{L} = \nabla \mathbf{v}^T$$

#### 参照配置曲率

$$\partial_t \tilde{\kappa}_R + (\mathbf{v} \cdot \nabla) \tilde{\kappa}_R = 0,$$

$$\mathbf{B}_{s} = \mathbf{P} \cdot \mathbf{G}_{s} \cdot \mathbf{P}, \ \mathbf{n} = \frac{\nabla \phi}{|\nabla \phi|}, \ \mathbf{\kappa} = -\nabla \left(\frac{\nabla \phi}{|\nabla \phi|}\right).$$

- Ii, Gong et al. (2012) Comm. Comput. Phys., 12, 544.
- Ii, Sugiyama et al. (2012) J. Comput. Phys., 231, 2328.

## 単純せん断流中の膜カプセルの変形

Spherical membrane (neo-Hookean model)

density: $\rho = 1$ 

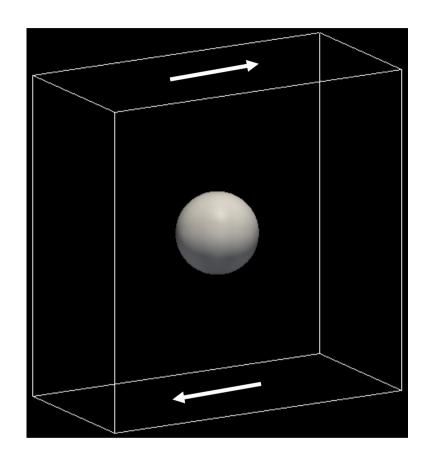
radius: a = 1

shear rate:  $\dot{\gamma} = 1$ 

$$[-4a, 4a] \times [-2a, 2a] \times [-4a, 4a]$$

Reynolds number: Re =  $\frac{\rho a^2 \dot{\gamma}}{\mu}$  = 0.001

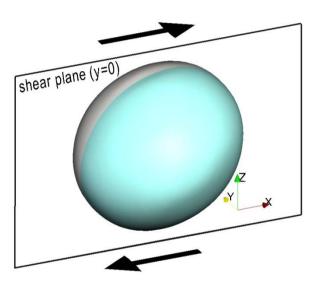
Capillary number: Ca =  $\frac{\mu a \dot{\gamma}}{E_s}$ 



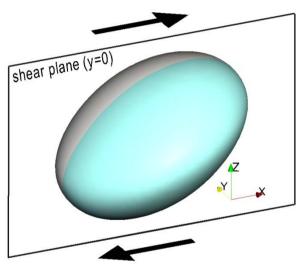
## カプセル形状 vs. Capillary number

$$Ca = \frac{\mu a \dot{\gamma}}{E_s}$$

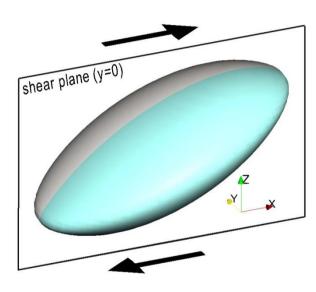
$$\Delta x = a / 16$$







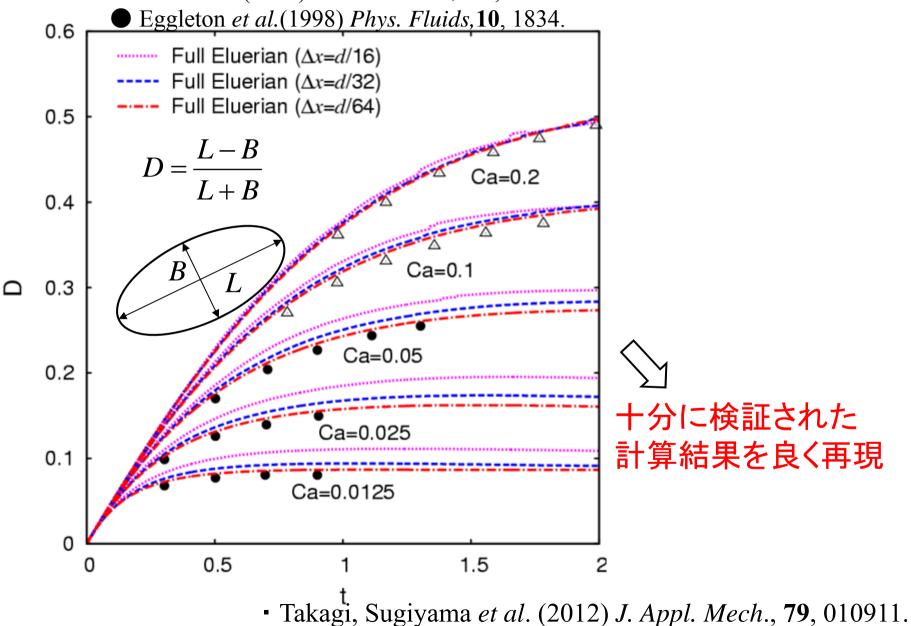
Ca=0.05



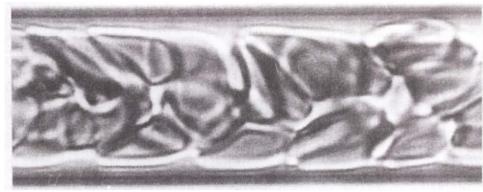
Ca=0.2

## 変形パラメータDの時間変化

△ Pozrikidis (1995) *J. Fluid Mech.*, **297**, 123.

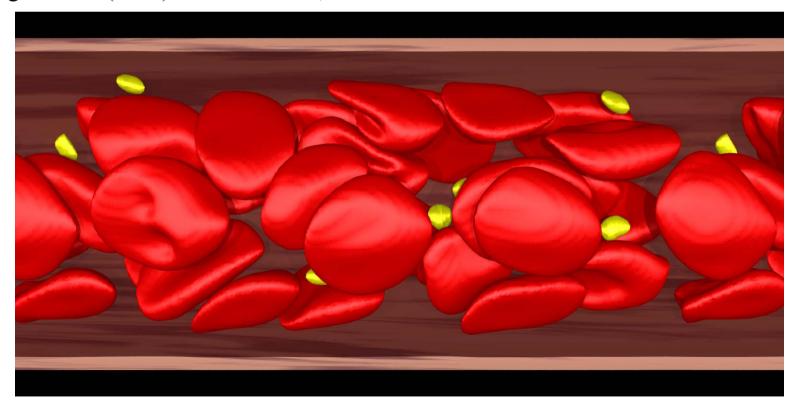


## 計算の妥当性(赤血球「群」の振る舞い、実験観測との比較)



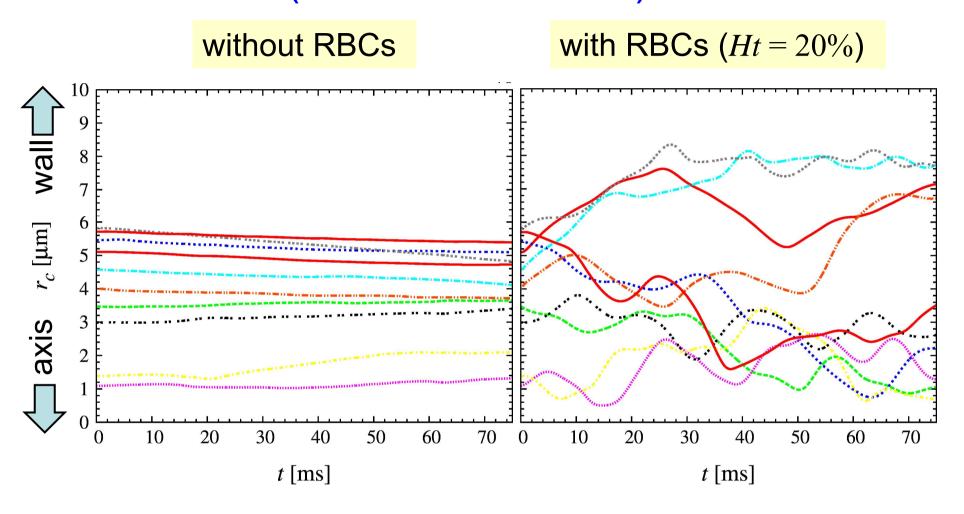
Gaehtgens et al.(1980) Blood Cells., 6, 799.

- ・管壁付近のcell free layer
- •スリッパ形状の赤血球



• Ii, Sugiyama et al. (2012) J. Biomech. Sci. Eng., 7, 72.

## 血小板の軌跡 (半径座標 vs. 時間)



• Ii, Sugiyama et al. (2012) J. Biomech. Sci. Eng., 7, 72.

#### 血栓シミュレータの開発血小板血栓に至る過程を数値予測したい

#### マルチスケール・マルチフィジックス



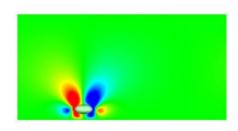
Shiozaki, Ishikawa & Takagi (2012)

J. Biomech. Sci. Eng., 7, 275.

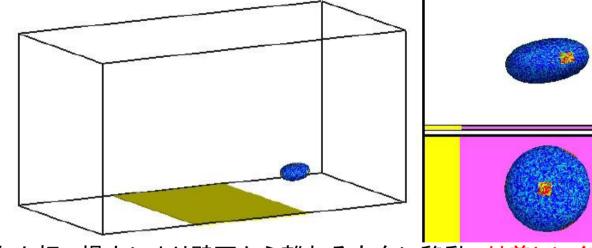
## 血小板付着の様子、赤血球の影響

チャネル流れ

#### 赤血球なし

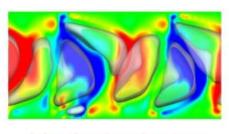


Vertical velocity at *t* = 16 [ms]

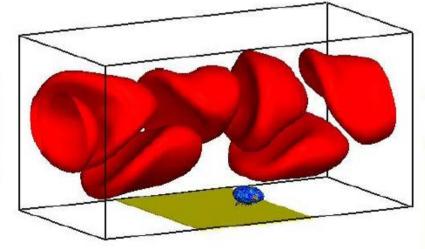


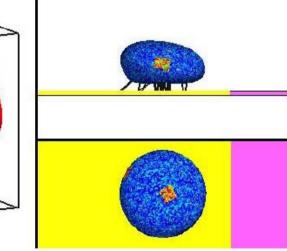
血小板: 揚力により壁面から離れる方向に移動. 付着しにくい.

#### 赤血球あり



Vertical velocity at *t* = 16 [ms]





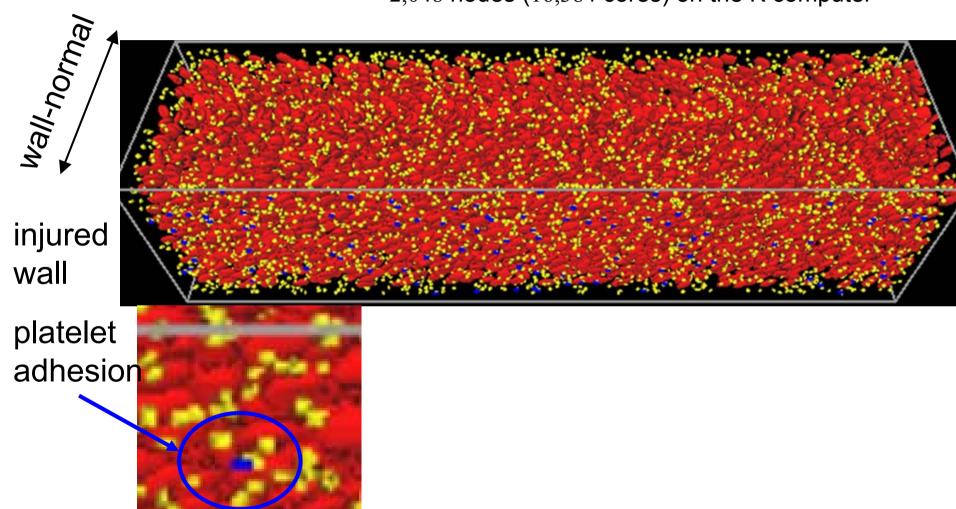
赤血球:壁面垂直方向の速度成分の変動を誘起.

血小板:壁面に接近する機会が増え,付着しやすくなる.

## on the relevance of RBCs to platelet adhesion Comp. extent: Plate adhesion 400μmx100μmx100μm

Ht = 20%

Comp. extent: 400μmx100μmx100μm Num. grid points: 2,048x512x512 2,048 nodes (16,384 cores) on the K computer



## まとめ

超大規模並列計算に適した流体・構造/膜連成解析手法の開発

#### 新たな 方法論の確立

- 複雑な境界形状/多数の分散体の扱いを容易に.
- 実効性能・線形拡張性の高い超大規模並列計算を可能に.

#### 血栓シミュレータへの拡張・応用

(血流とLigand-Receptor結合のマルチスケール/フィジックス解析)

・ 血栓形成の第一段階における、赤血球の存在の重要性を示唆、